
Automated Frameworks of Semantic Augmentation to Improve
Mathematical Word Problem Solving

Kunal Pai
University of California,

Davis
kunpai@ucdavis.edu

Nishant Acharya
University of California,

Davis
nacharya@ucdavis.edu

Zeerak Babar
University of California,

Davis
zebabar@ucdavis.edu

Abstract
Mathematical word problems (MWP) are a
challenging task for language models to solve,
due to the complex logical structures and the
need to remember context for longer periods of
time. In this study, we develop a framework to
generate and select prompts that utilize digit-
level semantics as contextual information to
improve accuracy of language models for solv-
ing mathematical word problems. We introduce
a demonstration selection algorithm based on
BLEU scores and Levenshtein distance, further
enhanced by a prompt selection model to iden-
tify the most similar equation to the question
for the 1-shot example. Our prompt generation
frameworks build on the inference of previous
studies by incorporating digit-level semantics
to increase the accuracy of mathematical tasks.

We test multiple prompt generation frameworks
and analyze the results on the SVAMP and
GSM8K datasets. To evaluate our prompts’ ef-
fect on the training process for small language
models, we fine-tuned TinyLlama using our
prompt-enhanced GSM8K questions as train-
ing samples, and tested on the SVAMP dataset.
Our results show that adding additional digit-
level context helps in increasing the accuracy
of MWP tasks and generates more accurate
sub-steps. Moreover, we found that different
operations, due to their varying levels of com-
plexity, require different types of context.

We further validate the importance of paramet-
ric knowledge by comparing inference-level
and training-level results. We also analyzed
the effectiveness of our demonstration selec-
tion algorithm, and identified areas for further
improvement. Our code can be found here.

1 Introduction

Mathematics poses significant challenges for lan-
guage models (Patel et al., 2021a). Several factors
contribute to this difficulty:

• Complex logical structures: Mathematical
problems involve intricate logic more so than

tasks like language modeling or image classi-
fication, causing generalization issues.

• Extended context retention: Solving math-
ematical problems, particularly word prob-
lems, requires models to remember context
over longer spans.

• Accurate function learning: Models must
learn to prioritize correct arithmetic functions
and avoid arbitrary ones to minimize errors.

A particularly challenging task is solving math-
ematical word problems, where problems are ex-
pressed in natural language and require translation
into mathematical equations for solving. This de-
mands a model to understand context clues and
apply appropriate arithmetic functions.

Current literature addresses these challenges us-
ing various techniques. Methods incorporate ex-
ternal knowledge through encoders and verifiers
to grasp mathematical structures (Yu et al., 2021;
Cobbe et al., 2021). Cyclic reasoners are employed
to retain long contextual information (Zhu et al.,
2023). Detailed step-by-step solutions help models
learn correct arithmetic functions (Lee et al., 2023).
However, these methods often necessitate training
or fine-tuning large models, which is costly.

An alternative is Chain of Thought prompting,
which has shown success in structural reasoning
tasks without extensive training (Wei et al., 2022;
Zhou et al., 2023a; Zheng et al., 2023). Our study
leverages this technique to develop an algorith-
mic, automatic 1-shot prompting framework for
solving mathematical word problems.

We propose a framework that generates prompts,
utilizing digit-level semantics, to enhance the pre-
diction accuracy of both small and large language
models. This framework aims to:

• Generate prompts with digit-level seman-
tics to improve models’ ability to construct

https://github.com/kunpai/ecs271-project


sub-steps necessary for operations such as car-
rying in addition and borrowing in subtrac-
tion.

• Automatically select similar examples in
a few-shot setting to help models generate
better sub-steps at the inference level.

The resulting dataset from our framework will
support fine-tuning or training models to learn
structural parametric knowledge, based on the in-
sight that models require additional contextual in-
formation to correctly learn mathematical func-
tions.

We will evaluate the efficacy of our framework
using two models: PaLM2 by Google (Anil et al.,
2023) as our inference-level large language model
and TinyLlama by Facebook (Peiyuan, 2023) as
our training-level small language model. Our pri-
mary datasets for prompt generation and testing are
SVAMP and GSM8K (Cobbe et al., 2021). Our
analyses aim to:

• Assess the ability of our prompting framework
to generate more accurate answers on a pre-
trained large model.

• Evaluate the improvement in accuracy of train-
ing small language models using our prompt
generation strategy.

• Analyze our prompting framework’s ability
to generate more accurate sub-steps on a pre-
trained large model.

Our main technical contributions are:

• Developing a 1-shot prompting framework
that automatically selects a similar equation
to that of the given mathematical word prob-
lem, using a mixture of BLEU score (Papineni
et al., 2002), Levenshtein distance (Leven-
shtein et al., 1966), and a pre-trained selector.
We aim to enhance the accuracy of solving
tasks and digit-level sub-step generation.

• Creating operation-specific generalizable
prompt templates with digit-level semantic
context, usable at both inference and training
levels.

• Analyzing the accuracy of these prompts
across different arithmetic operations and their
effectiveness in generating better sub-steps.

2 Method

2.1 Preliminaries

Our research aims to identify and develop an au-
tomated prompt selection and generation frame-
work, to enhance the accuracy of language mod-
els for mathematical word problem solving. This
involves generating prompts with digit-level sub
steps and selecting example prompts with similar
complexity as the question, for 1-shot prompting.

2.2 Techniques

Our study aims to create prompts and a prompt
selection strategy at inference level, and we further
test the efficacy of our prompts at training level,
by fine-tuning a small language model. We mainly
use two models in our study, PaLM2 (34 Billion
Parameters) (Anil et al., 2023) and TinyLlama (1.5
Billion Parameters) (Peiyuan, 2023).

2.2.1 Inference Level
For the inference level experiments, we used
PaLM2’s default “text-bison-001” model (Anil
et al., 2023) by Google.

We analyze different frameworks and validate
their accuracy. These frameworks involve prompt-
ing the model with additional mathematical context,
including the equation to solve the word problem
and digit-level semantic information from a manual
and a couple of automatic techniques. In doing so,
we better the model’s ability to generate the answer
and sub-steps to get to the answer.

These frameworks can be viewed in Figure 1,
and are as follows:

• Basic: In this framework, we prompt using
just the word problem from the datasets.
The query to the model is “Solve this
question: <QUESTION>”. The
<QUESTION> is a placeholder for the actual
question. This prompt requires no 1-shot
example, as the most context that can be
provided here is just the answer.

To validate this strategy, we compare the gen-
erated answer against the actual answer to the
question.

• Text: Developing on the previous approach,
we add the additional context of the equation
associated with the the word problem. The
prompt for this approach is “Solve this
question: <QUESTION>. The



Figure 1: The above figure shows an example of the three different types of prompts. The base prompt takes just
the question, its example provides no extra context. The text prompt provides the equation of the question as an
additional prompt. Lastly, the scratch prompt provides detailed mathematical information in the example, which is
used to generate the same type of information for the actual question, as seen in the second last block, which is then
used to generate the answer.

equation to solve the question
is <equation> <EQUATION>
</equation>”. The <EQUATION>
and <QUESTION> are placeholders for the
actual equation and question. The provided
equation is the entire equation, each number
present in the equation is also present in the
question itself. It is not broken down into
sub-steps.

This approach is validated by comparing if
the model can infer the answer based on the
provided equation.

• Static Simplified Scratch (SSS) 1-Shot: In
this framework, we begin by extracting the
word problems and equations from the desig-
nated datasets. The equations are then sim-
plified into two operands and a single oper-
ator. For example, if the equation required
to solve a problem is 5 + 3 + 2, the sim-
plified equation would be 8 + 2 {5 + 5 is
also a valid simplification}.

The previous step is used to regulate the
amount of information in the context, so
that the number of sub-steps does not blow
up, and to ensure consistency between all
equations used in the prompt. The sub-steps

are generated using a arithmetic algorithm,
and highlights the digit-level semantics. The
generated sub-steps for the above equation
are, “Adding 8 + 2: 10; Result
0; Carry 1; Adding 1 + 0: 1;
Result 1; Final Result 10”. This
context will be addressed as the scratch
section.

During inference, we use a 1-shot approach
where we provide a single example of a
similarly complex question, complete with its
solution and scratch section. This example,
which we refer to as the gold example, is
selected manually in the SSS framework. We
ensure the gold example demonstrates crucial
concepts such as carrying and borrowing, and
matches the complexity of the target question.
After presenting the gold example, we ask
PaLM2 to generate the scratch section for the
target question based on this example, and
then infer the answer based on its generated
scratch section. The prompt for this approach
looks like: “Look at the question,
equation and scratch section
as follows: <QUESTION>. The
equation to solve the question
is <equation> <EQUATION>



</equation>. The scratch
section is <scratch> <SCRATCH>
</scratch>. Generate a
methodology for the following
question and equation:
<QUESTION>. The equation
to solve the question
is <equation> <EQUATION>
</equation>”. The <EQUATION>,
<QUESTION> and <SCRATCH> are place-
holders for the actual equation, question
and scratch parts. The model then generates
the target question’s scratch section. The
next prompt involves asking it to infer the
answer from the provided scratch section,
and is as follows: “Look at this
scratch section: <scratch>
<SCRATCH> </scratch>. What is
the answer to the question?”.

For validation, we compare the target ques-
tion’s scratch section to the scratch section
that has been generated by our generation
script, using BLEU score. We also check for
the accuracy of the answer.

Figure 2: Dynamic Simplified Scratch 1-Shot tech-
niques

• Dynamic Simplified Scratch 1-Shot: The
previous approach relied on manually chosen
example prompts, known as gold examples,
which is not scalable. To address this, we in-
troduce a demonstration selection algorithm
to select a personalized example for each tar-
get question. Similar to the previous approach,
we extract the question and its equation. But
then, we use the demonstration selection algo-
rithm to find the best example for that ques-
tion instead of manual selection. The rest of

the procedure remains the same as in the SSS
1-Shot approach.

The demonstration selection algorithm works
as follows:

– Per equation, we pre-process it to remove
whitespaces, parentheses, and other non-
essential characters, resulting in a string
of two numbers and an operation.

– We then append a boolean to each equa-
tion, True or False, based on whether
the equation involves carrying or borrow-
ing. This semantic information further
aids in understanding the complexity of
the equation.

– We then use a combination of BLEU
score (Papineni et al., 2002) and Leven-
shtein distance (Levenshtein et al., 1966)
to compare the equation of the question
being solved to the other equations in the
dataset.

– We then choose the equations with the
top 5 highest BLEU scores and lowest
Levenshtein distances as the gold exam-
ples.

We tried two variants of the dynamic scratch
1-shot framework, which can also be seen in
Figure 2:

Dynamic Simplified Top Scratch
(DSTS) 1-Shot: In this variant, we use the
top prompt, out of the top 5 prompts, as the
gold example for the 1-shot prompting.

Besides the gold example, the approach is the
same as the SSS 1-shot approach. Therefore,
we use the same prompts to guide the model
to generate the scratch section and to generate
the answer based on the scratch.

For validation we check the generated
scratch’s similarity, using BLEU score, to the
ground truth generated by our scratch genera-
tion script. We also check for the accuracy of
the final answer.

Dynamic Simplified LLM Retrieval
Scratch (DSLRS) 1-Shot: To provide some
more flexibility in choosing a different gold
example, and avoid giving the model very
similar equations for 1-shot, we use this vari-
ant where we ask a selector model to choose
the best example for the target question. In
this case, due to resource constraints, we use



PaLM2’s “text-bison-001” (Anil et al., 2023)
as the selector.

We ask the selector model to choose
the closest equation, from the top 5
closest equations, as determined by the
aforementioned demonstration selection
algorithm. The prompt for that is “Look
at this equation: <equation>
<EQUATION> </equation>. Which
of the following equations is
the closest to the equation?
<equation> TOP1 </equation>,
<equation> TOP2 </equation>,
<equation> TOP3 </equation>,
<equation> TOP4 </equation>,
<equation> TOP5 </equation>”.
The rest of the process and the prompts are
similar to SSS 1-shot. Based on the equation
picked by the selector, we algorithmically
generate its digit-level scratch section, and
use that as the gold example, to assist the
model in generating its own scratch section,
and infer the answer from it.

For validation, similar to previous approaches,
we use BLEU score to calculate the scratch
generation accuracy. We also check for the
final answer accuracy.

2.2.2 Training Level
Another aspect of our study involved evaluating
how effectively our frameworks could be used for
fine-tuning or training a small language model. We
aim to optimize the training process for small lan-
guage models and develop a resource-efficient solu-
tion for learning to solve mathematical word prob-
lems. For the training level experiments, we used
TinyLlama (Peiyuan, 2023) by Facebook. We used
the latest checkpoint for the model, which has 1.5
billion parameters.

We used the same frameworks as the inference
level experiments to generate the prompts. All in-
ference on the fine-tuned model was conducted in
a zero-shot manner, meaning no examples were se-
lected. This is because the demonstration selection
algorithm and manual gold example selection are
inference level concepts, and hence, are not feasi-
ble for training level experiments. Therefore, we
only used the basic, text, and scratch frameworks
for the training level experiments.

We fine-tuned six models, 3 per operation, for
the training level experiments:

• Basic Addition/Subtraction: This model was
trained on GSM8K addition and subtraction
questions and answers. The training samples
did not contain any extra context.

• Text Addition/Subtraction: Similar to infer-
ence, the text model was trained on questions,
the equations to solve those questions and the
answer.

• Detailed Scratch Addition/Subtraction:
Building on top of the previous model, this
model also has the scratch section generated
from our generation script appended as se-
mantic information after the questions and the
equations.The equations are not simplified, un-
like the inference level experiments.

The models were evaluated for their generaliz-
ability on the SVAMP dataset (Patel et al., 2021b),
with final answer accuracy as our metric. Due to
resource constraints, we implemented several opti-
mization techniques, such as using low-rank weight
matrices for training, employing a paged optimizer
to speed up gradient recording, and reducing float
size to 8 bits for storage, which were then up-sized
during usage.

3 Experiments

3.1 Experimental Setup
The inference experiments were conducted on a
MacBook Air with an M1 chip. The MacBook
Air has 8 cores and 16 GB of RAM. Since the
PaLM2 model has an API, we wrote a Python
script to interact with the API. The script prompts
the model with the different frameworks, and then
compares the model’s answer to the expected an-
swer. The script also calculates the BLEU score of
the model’s scratch section, to see if it can generate
the correct sub-steps. The Python libraries used
in the script are google.generativeai v0.6.2, json
v3.10.2, and nltk v3.8.1.

The TinyLlama model was fine-tuned on a
Google Colab Pro (Bisong and Bisong, 2019) in-
stance, a mixture of A100 and L4 GPUs were used
which have a RAM of 40 GB and 22.4 GB GPU
RAM respectively.

3.2 Datasets
We used the following datasets for our experiments:

• SVAMP (Patel et al., 2021a): The SVAMP
dataset is a dataset of 1000 challenging math



word problems. There are 195 addition exam-
ples and 507 subtraction examples.

• GSM8K (Cobbe et al., 2021): The GSM8K
dataset is a dataset of 8000 grade school level
math word problems. There are 2371 addition
examples and 1979 subtraction examples.

3.3 Results
3.3.1 PaLM2
Our results for the PaLM2 model can be seen in
Tables 1 and 2. The results for the BLEU scores
of the scratch section generation can be seen in
Tables 3 and 4.

Table 1: PaLM2 Accuracy on SVAMP Dataset

Operation Basic Text SSS DSTS DSLRS
1-Shot 1-Shot 1-Shot

Addition 59% 80% 80% 81% 68%
Subtraction 70% 81% 89% 77% 79%

Table 2: PaLM2 Accuracy on GSM8K Dataset

Operation Basic Text SSS DSTS DSLRS
1-Shot 1-Shot 1-Shot

Addition 38% 87% 66% 44% 44%
Subtraction 82% 80%

Table 3: PaLM2 BLEU Scores on SVAMP Dataset
Scratch Section Generation

Operation SSS DSTS DSLRS
1-Shot 1-Shot 1-Shot

Addition 0.80 0.87 0.85
Subtraction 0.82 0.89 0.88

3.3.2 TinyLlama
Our results for the TinyLlama model can be seen
in Table 5.

3.4 Analysis
PaLM2: Our Scratch prompting frameworks beat
the Basic and Text based prompting frameworks
for PaLM2. For SVAMP the highest accuracy for
subtraction prompts was 89% using the SSS 1-shot
framework, and for addition was 81% DSTS 1-shot
framework. For GSM8K, our prompting frame-
works did better than the baseline for both subtrac-
tion and addition, but worse than the Text frame-
work.

Our demonstration selection technique improved
the accuracy of addition prompts when selecting

Table 4: PaLM2 BLEU Scores on GSM8K Dataset
Scratch Section Generation

Operation SSS DSTS DSLRS
1-Shot 1-Shot 1-Shot

Addition 0.25 0.45 0.45
Subtraction 0.25 0.47 0.46

Table 5: TinyLlama Accuracy on SVAMP Dataset

Operation Basic Text Detailed
Scratch

Addition 1.025% 0% 77.659%
Subtraction 0.7% 4.133% 26.967%

the most similar equation from the top 5 options.
For subtraction, accuracy improved when a prompt
selector (PaLM2 in our study) was used to choose
the most similar equation from the top 5.

We believe that the drop in accuracy for GSM8K
was due to PaLM2 already having parametric
knowledge of GSM8K. Adding additional context
in the prompt led to overfitting and hallucination
of answers.

Our DSTS 1-shot framework improved the accu-
racy of addition. We believe this is due to addition
being a simpler function to learn. We theorize that
the DSTS 1-shot framework could not improve the
accuracy of subtraction since it is comparatively
harder, and needs more information to capture the
complexity of it. The concept of carrying in addi-
tion is straightforward: if the sum of two numbers
is greater than 9, then 1 is carried over to the next
digit. However, the concept of borrowing is more
complex: if the number being subtracted is greater
than the number it is being subtracted from, the
model borrows 1 from the next digit. This reduc-
tion due to borrowing can lead to more complex
situations, such as reducing a 0 (treated as 10) to 9,
which requires a multi-step process. Additionally,
the direction of operations is important; carrying
works in the same direction as digit-level addition
(right to left). In contrast, borrowing works from
left to right, while digit-level subtraction happens in
the opposite direction, which can cause the model
to be confused when trying to infer information
from the context, making subtraction harder for it.

Our current methodology for choosing a demon-
stration uses digit-level semantic similarity through
BLEU scores and Levenshtein distance over the
equation. However, this may not be enough to
capture the complexity of a subtraction equation.



From picking the gold example in SSS 1-shot, we
found that using examples similar in complexity,
rather than exactly the same, provides much better
accuracy for subtraction. While this is possible in
SSS 1-shot due to manual demonstration selection,
automating this requires a more robust metric that
captures the complexity of the problem, not just
semantic similarity.

Moreover, we believe that due to the model
having some parametric knowledge of arithmetic
operations, less complex prompts were supple-
mented by this parametric knowledge. This may ex-
plain why the DSLRS 1-shot framework performed
slightly better on subtraction questions. This hy-
pothesis is further validated by the fact that this
behavior is not observed in TinyLlama, where no
parametric knowledge is present, since we are train-
ing the model.

Our DSTS 1-shot framework also improves the
BLEU score of the scratch section generation for
both addition and subtraction operations on the
SVAMP dataset and the GSM8K dataset. The
model was able to generate more correct sub-steps
for the scratch section using the most similar equa-
tion to it. This makes sense, as seeing more similar
digit-level operations being performed, assist the
model in generating more accurate sub-steps. We
noticed BLEU scores of 0.87 for addition and 0.89
for subtraction on the SVAMP dataset, and BLEU
scores of 0.45 for addition and 0.47 for subtrac-
tion on the GSM8K dataset. The other frameworks
did not perform as well as the DSTS 1-shot frame-
work, because the model had to rely on its own
structural understanding to construct the sub-steps,
which it may not have been able to do as well as a
case where it sees the operation being performed
on similar numbers.

Our results indicate that having a single best
prompt works the best for generating digit-level
sub steps for solving a mathematical word prob-
lem. We also found that addition is semantically
simpler and easier to generalize than subtraction.
We believe that, in the future, using a metric to
capture the mathematical complexity of a prob-
lem for demonstration selection is better suited to
solve subtraction problems. To merge multiple
arithmetic functions, a non linear metric needs to
created, which means that a multi-layer feed for-
ward network, or similar class of models, can be
used for improving demonstration selection.

TinyLlama: The fine-tuned TinyLlama model

had the best accuracy for scratch framework, both
for addition and subtraction, with the highest ac-
curacy of 77.659% on addition questions, and
26.967% on subtraction questions. This suggests
that our technique of algorithmically generating
digit-level contextual sub-steps significantly en-
hances the model’s ability to learn these functions
compared to using no context or minimal context.

It is imperative to use the entire detailed equa-
tion, as it helps the model better connect the num-
bers in the question to the numbers in the equation.
We do see a discrepancy in the Text framework ex-
periments for TinyLlama, where addition has a 0%
accuracy. We believe this is a byproduct of answer
hallucination.

3.5 Takeaways from Alternative Frameworks
To further analyze the prompt selection and gen-
eration strategies, we experimented with various
approaches. Our insights from these experiments
are as follows:

• We attempted a dynamic Python code based
framework to generate contextual informa-
tion and answers. In this framework we ask
the model to generate Python code to solve
the question, and then run the code to obtain
the answer. This approach was unsuccess-
ful, likely due to insufficient connections be-
tween the question, the equation, and the code,
which led to model hallucinations. The accu-
racy for this approach was 57% for addition,
66% for subtraction on SVAMP, for just us-
ing code. Adding additional context in the
form of an equation decreased the accuracy
by a few point, 52% for addition and 65% for
subtraction.

• We used the Text framework on the
SVAMP dataset for multiplication and divi-
sion. Adding equations as context increased
the accuracy from 58% to 64% for multiplica-
tion and from 85% to 91% for division. We
also applied the SSS 1-shot framework to the
same examples. For multiplication, accuracy
increased to 69%, while for division, accuracy
decreased to 66%. We believe this decrease
is due to division being similarly complex to
subtraction, with the model having a better
parametric understanding of this operation.
Therefore, this approach may not generalize
as well for division as it might for multiplica-
tion.



4 Related Work

Mathematical Word Problem Solving: Under-
standing Mathematical Word Problems (MWP) is
a critical task, and research in this area using Large
Language Models (LLMs) has advanced signifi-
cantly. Parametric knowledge and embeddings are
popular methods for learning mathematical struc-
tures in LLMs. Yu et al. introduced the idea of
using an external knowledge encoder to better learn
the structure of the MWP (Yu et al., 2021). Another
avenue is to increase the reasoning capabilities of
the LLM, for example, Zhu et al. proposed a rea-
soner to mimic human reasoning processes when
solving MWPs (Zhu et al., 2023). Similarly, Cobbe
et al. introduced the concept of verifiers to evaluate
generated answers and use this metric in training
(Cobbe et al., 2021). Patel et al. explored the com-
plexity of the current benchmark datasets, and how
treating MWPs like a bag of words does not work
on challenging questions (Patel et al., 2021b). Lee
et al. developed a chain of thought training set to
train small language models arithmetic, with the
key idea being having informative digit-level infor-
mation (Lee et al., 2023).

Chain of Thought prompting: LLMs have
been shown to be successful in natural language
processing, and multi-step prompts can be used to
guide a LLM towards the correct answer, given sev-
eral examples. Wei et al. explored how generating
intermediate chain of thought steps in LLMs during
inference increased reasoning task accuracy (Wei
et al., 2022). Zhou et al. examined using chain of
thought prompting to make LLM generation more
contextually faithful (Zhou et al., 2023b). To in-
crease the multi-modal reasoning accuracy over
images and text, Zheng et al. introduced DDCoT, a
zero-shot prompting strategy to break the question
into simpler steps to generate the correct answer
(Zheng et al., 2023).

5 Conclusion and Future Work

Conclusion: In this project we developed and ex-
plored frameworks to automatically generate and
select digit-level semantic context for prompting, to
increase the accuracy of mathematical word prob-
lem solving tasks. Our motivation was to create a
framework that could effectively direct a model to
solve mathematical word problems. To this end,
we tested our framework at the inference level us-
ing PaLM2 and at the training level using TinyL-
lama, primarily utilizing the GSM8K and SVAMP

datasets for testing and fine-tuning.
Our results indicate that the DSTS 1-shot frame-

work, which employs BLEU score and Levenshtein
distance for demonstration selection, performs the
best in generating the closest correct sub-steps for
addition and subtraction, and the correct answers
to word problems for addition. The results for sub-
traction suggest that similarity alone is insufficient;
we need more dimensions for domain selection.
Specifically, the metric should capture the complex-
ity of the problem and the borrowing process while
minimizing the overfitting aspect of prompting.

Another takeaway is that different mathematical
operations have varying levels of complexity. Ad-
dition is observed to be the simplest, followed by
multiplication (which can be rewritten as a series
of additions), then subtraction, and finally division.
As mentioned above, a more complex metric needs
to be created for demonstration selection for in-
creasing the accuracy on these tasks. We believe
one such avenue can be to use models from the
same family as a feed forward network with non-
linear activation functions to model the different
metric for each operation into a single step-wise
metric.

Future Work: In the future, we plan to explore:

• Update Demonstration Selection Algo-
rithm: We aim to improve the demonstration
selection algorithm to better choose the gold
example for the dynamic scratch 1-shot frame-
works. This involves using a feed-forward
network or FFN-based demonstration selector
that incorporates current and additional met-
rics to model mathematical complexity simi-
larity.

• Semantic Information: We plan to update
our generation techniques to ensure semantic
information is consistent for subtraction and
division. One approach is to reverse the digit-
level arithmetic, so that borrowing and the
operation are in the same direction.

• Different Operations: Our ultimate goal is
to develop a prompt selection and creation
framework that enhances the accuracy of a
range of arithmetic operations. To this end,
we will integrate more arithmetic operations,
such as multiplication, division, modulo, and
others, into our framework.



References
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Ekaba Bisong and Ekaba Bisong. 2019. Google colabo-
ratory. Building machine learning and deep learning
models on google cloud platform: a comprehensive
guide for beginners, pages 59–64.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kang-
wook Lee, and Dimitris Papailiopoulos. 2023. Teach-
ing arithmetic to small transformers. arXiv preprint
arXiv:2307.03381.

Vladimir I Levenshtein et al. 1966. Binary codes capa-
ble of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021a. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021b. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Zhang Peiyuan. 2023. Tinyllama. https://
github.com/jzhang38/TinyLlama.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Weijiang Yu, Yingpeng Wen, Fudan Zheng, and Nong
Xiao. 2021. Improving math word problems with
pre-trained knowledge and hierarchical reasoning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3384–3394, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Ge Zheng, Bin Yang, Jiajin Tang, Hong-Yu Zhou, and
Sibei Yang. 2023. Ddcot: Duty-distinct chain-of-
thought prompting for multimodal reasoning in lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 36:5168–5191.

Wenxuan Zhou, Sheng Zhang, Tristan Naumann,
Muhao Chen, and Hoifung Poon. 2023a. Continual
contrastive finetuning improves low-resource relation
extraction. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 13249–13263,
Toronto, Canada. Association for Computational Lin-
guistics.

Wenxuan Zhou, Sheng Zhang, Hoifung Poon, and
Muhao Chen. 2023b. Context-faithful prompt-
ing for large language models. arXiv preprint
arXiv:2303.11315.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and Yu-
jiu Yang. 2023. Solving math word problems via
cooperative reasoning induced language models. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 4471–4485, Toronto, Canada.
Association for Computational Linguistics.

http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://github.com/jzhang38/TinyLlama
https://github.com/jzhang38/TinyLlama
https://doi.org/10.18653/v1/2021.emnlp-main.272
https://doi.org/10.18653/v1/2021.emnlp-main.272
https://doi.org/10.18653/v1/2023.acl-long.739
https://doi.org/10.18653/v1/2023.acl-long.739
https://doi.org/10.18653/v1/2023.acl-long.739
https://doi.org/10.18653/v1/2023.acl-long.245
https://doi.org/10.18653/v1/2023.acl-long.245

